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Abstract—Action Unit (AU) is a systematic coding of facial
behaviors that plays a crucial role in facial expression recognition.
AU detection faces significant challenges due to the fine-grained
categorical differences and coexistence at varying intensities
of the AU. To address these challenges, we propose a refined
behavior-prompt AU detection model featuring a coarse-to-fine
tree attention mechanism. Specifically, we introduce a learnable
behavior-prompt approach that utilizes large vision-language
models, harnessing their powerful semantic representation capa-
bilities to encompass comprehensive prior knowledge of AU be-
haviors. Besides, considering AUs’ diverse intensities and interac-
tive nature, a coarse-to-fine tree attention module is customized to
capture the fine-grained details of individual AUs and their long-
range dependencies. To further mitigate vision-text bias, a feature
interaction learning strategy is employed that progressively
incorporates context-related visual information into prompts
and decouples AU-specific representations. Extensive experiments
demonstrate that our proposed method achieves state-of-the-art
results on two widely used benchmarks, BP4D and DISFA. Our
code is avaliable at https://github.com/ColinHaoZou/FAUD-CLIP.

Index Terms—Action Unit; Vision-language model; Attention

I. INTRODUCTION

Facial expressions are a natural and effective way to convey
affective information in human non-verbal communication.
To establish an objective and comprehensive framework of
describing different expressions, Ekman and Friesen proposed
the Facial Action Coding System (FACS) [3]. In FACS, various
atomic muscle motions underlying facial skin are encoded as
Action Units (AUs) and different combinations of AUs form
a wide range of facial expressions. Accurate and effective
facial AU detection can significantly benefit the downstream
affective recognition tasks, including expression recognition
[27], depression detection [23], and pain level analysis [31]. As
a result, automatic facial AU detection has attracted increasing
attention as a key component of affective computing.

Since individual AUs typically manifest in localized regions
of the face, most AU detection methods [10], [18] attempt to
leverage the location information provided by facial landmarks
to extract AU-related features from the corresponding regions.
Nevertheless, the location information provided by these fa-
cial landmarks is insufficient for facial action unit detection.
According to the AU descriptions in FACS, AUs are not only
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The corners of the lips are markedly
raised and angled up obliquely. The
nasolabial furrow has deepened slightly
and is raised obliquely slightly. The
infraorbital triangle is raised slightly.

AU12: Lip Corner Puller

The lip corners are extremely tightened,
and the wrinkling as skin is pulled inwards
around the lip corners is severe. The skin
on the chin and lower lip is stretched
towards the lip corners, and the lips are
stretched and flattened against the teeth.

AU14: Dimpler

Fig. 1. The behavioral descriptions from the FACS [3] provide detailed
information that could be leveraged to help the model better distinguish
resembling AUs. For example, AU12 and AU14 are at the same facial location
(in red) and with different motion appearances (in blue and green).

related to the location but also to the motion they produce. For
example, both AU12 and AU14 appear at the lip corners, but
AU12 pulls the lip corners upward the cheek obliquely while
AU14 tightens the lip corners, as shown in Fig. 1. Therefore,
some methods [11], [21] have sought to incorporate temporal
information by utilizing frame sequences as inputs to capture
the dynamic features of AUs. However, such approaches often
demand substantial computational resources and labeled data.

FACS provides detailed descriptions of AU behaviors, of-
fering an efficient way to incorporate both spatial and motion
information into models. Some methods [30], [34] have ex-
plored leveraging these descriptions to enhance AU represen-
tations. Yang et al. [30] proposed a cross-modality attention
network that utilizes AU descriptions to generate attention
maps. This approach relies solely on location information,
overlooking motion cues for visual feature extraction. Re-
cently, vision-language models such as Contrastive Language-
Image Pretraining (CLIP) [16] have demonstrated significant
capabilities in aligning image and text feature spaces by
leveraging large-scale data. Zhang et al. [34] further extended
CLIP by utilizing label names and descriptions as prompts to
guide global feature extraction, showcasing the potential of
CLIP for representation learning. Nevertheless, this method is
not specifically designed for facial AU detection. The low-



dimensional global image embeddings extracted by CLIP’s
image encoder cannot sufficiently capture the motion infor-
mation of multiple AUs occurring in the face, thereby limiting
effective interaction with the text embeddings. Furthermore,
AU detection is characterized by locality and diverse intensity
variations, while the interdependencies among AUs (e.g.,
cheek raising co-occurring with lip corner pull) are also crucial
for accurate detection. Although CLIP’s image encoder can
capture global relationships within a face through the self-
attention mechanism, it still struggles to accurately establish
long-range dependencies between local AU regions due to
noises introduced by irrelevant facial areas.

To address the aforementioned challenges, we propose a
novel refined behavior-prompt approach featuring a coarse-
to-fine tree attention mechanism. This model is specifically
designed for facial AU detection task based on CLIP, en-
abling more effective utilization of semantic information
from behavior prompts to extract AU-specific representations.
Specifically, we leverage the powerful semantic representation
capabilities of the large vision-language model to efficiently
encode comprehensive prior knowledge of AU behaviors while
introducing learnable prompts to better adapt to the AU
detection task. Additionally, considering the diverse intensities
and correlations of AUs, we introduce a coarse-to-fine tree
attention module that utilizes a multi-scale and hierarchical
attention mechanism to capture the fine-grained features and
long-range dependencies of AUs. Finally, we deploy a novel
feature interaction learning module that leverages behavioral
prompts to decouple AU-specific representations and incorpo-
rates context-related visual information into the prompts dur-
ing training, further mitigating vision-text bias and enhancing
the guidance capability of the behavioral prompts.

The main contributions can be summarized as follows:
• We propose learnable behavior-prompts to encode lo-

cation and motion cues, thereby adapting CLIP’s text
encoder for effective AU representation.

• A tree attention is explored to capture fine-grained AU
features and long-range dependencies by leveraging the
multi-scale and hierarchical mechanism.

• A feature interaction framework is designed to lever-
age behavior-prompts for disentangling AU-specific fea-
tures while integrating contextual information to mitigate
vision-text bias and enhance guidance capabilities of
prompts.

• Extensive experiments demonstrate that the proposed
method outperforms state-of-the-art (SOTA) methods on
two widely-used benchmarks, namely BP4D and DISFA.

II. RELATED WORK

A. Facial Action Unit Detection

Automatic facial AU detection plays a vital role in enabling
computers to understand human emotions. As data-driven deep
learning models have demonstrated powerful representational
capabilities in computer vision tasks, many approaches have
leveraged these models and incorporated specific designs to

improve the performance of facial AU detection. For exam-
ple, based on the traditional convolutional layer, Zhao et al.
[36] redesigned a novel region layer that divides the entire
feature into several uniform patches, learning these patches
independently to capture features from different facial regions.
Motivated by this work, Li et al. [10] proposed an enhancing
layer and a cropping layer in EAC-Net, which is based on
a pretrained VGG-19 [22]. In both layers, predefined facial
landmarks were considered as AU-related regions to guide
the network’s attention to AU-specific areas and crop AU-
related features for further learning. Since then, several studies
[5], [7] have followed this cropping approach to explicitly
learn AU features. However, significant challenges remain, s
uch as variations in the relationship between facial landmarks
and AUs across individuals, as well as differences in the
size of regions of interest (ROIs) corresponding to different
AUs. To address these issues, Shao et al. [18] explored
a multi-task learning approach combining facial landmark
detection and facial AU detection, leveraging their positional
correlation to adaptively generate attention maps for each
AU. Additionally, they further developed the region layer in
DRML [36], proposing a hierarchical and multi-scale region
layer. This layer consists of three hierarchical convolution
layers, with each layer dividing features into several patches of
varying sizes to capture AU-specific features. Although facial
landmarks provide valuable information for AU detection,
their performance remains limited. As a result, other studies
have incorporated frame sequences to capture the temporal
dynamic information of AUs. For instance, Shao et al. [21]
introduced a temporal Graph Neural Network (GNN), which
considers the temporal information of each node in a set of
spatial graphs to capture AU dynamics. Li et al. [11] utilized a
transformer to model the spatial relationships and inter-frame
context of AUs. Other approaches [2], [6] have also been
explored. Although these methods have achieved promising
results, they often require substantial computational resources
and labeled data.

More recently, two works in facial AU detection have in-
corporated textual descriptions as auxiliary information to help
the model capture the dynamic features of AUs. For instance,
Yang et al. [30] proposed a cross-modality attention module
that combines semantic embeddings from AU descriptions in
the FACS with visual features from input images to generate an
attention map and capture discriminative AU-related features.
However, this approach only utilizes location information to
generate the attention map and weight the visual features,
without fully exploiting the motion information from textual
descriptions to guide the extraction of visual features. Zhang et
al. [34] used label names and behavioral descriptions to fine-
tune a pretrained model for both facial expression recognition
and facial AU detection. Although this work aligns text and
image embeddings using the pretrained model, it lacks designs
specifically tailored for AUs. Therefore, leveraging textual
descriptions to assist in facial AU detection deserves further
exploration.



B. Vision-Language Models

Vision-language pre-training models are developed through
contrastive learning on large-scale image-text pairs. Due to
the convenience and cost-effectiveness of collecting such
pairs from the internet, vision-language models have made
significant progress. One of the most prominent models is
CLIP [16], which leverages over 400 million image-text pairs
collected from the internet for contrastive learning, achieving
impressive zero-shot performance. This enables CLIP to be
applied to a wide range of downstream computer vision tasks.
Recently, inspired by CLIP, Li et al. [9] trained a multimodal
mixture of encoder-decoder models that can flexibly transfer
to vision-language understanding and generation tasks by
effectively utilizing noisy network data. Li et al. [12] achieved
simple and efficient training for CLIP by randomly masking
or removing large portions of the image patches in image-
text pairs. Furthermore, recent studies have explored applying
vision-language models to facial expression-related tasks. For
example, Li et al. proposed the CLIPER [8], which builds upon
CLIP by designing multiple expression textual descriptors
to learn fine-grained expression representations. Zhao et al.
[37] further introduced a Transformer-based module to better
capture temporal information for dynamic facial expression
recognition. Zhang et al. [34] enhanced the CLIP model by
integrating label names and behavioral descriptions to improve
facial representation. However, existing approaches have not
been specifically tailored for facial AU detection.

Compared with existing methods, our proposed methods
customize a coarse-to-fine tree attention module to capture
fine-grained image features and long-range dependencies for
the facial AU detection task. Learnable behavioral prompts are
also introduced to integrate AU motion information into the
model. Additionally, we propose a novel feature interaction
learning module that decouples AU-specific representations
and further incorporates context-related visual information
from the image features into the prompts for further refine-
ment. Through these innovative designs, our model, built upon
CLIP, achieves superior performance compared with previous
SOTA methods.

III. METHODOLOGY

A. Overview

The primary task of facial AU detection is to identify the
occurrence of all AUs in a given image. Since it is essential
to accurately capture the appearance changes in the localized
facial regions corresponding to different AUs, many methods
rely on facial landmarks and frame sequences to incorporate
location and motion information of AUs, respectively, thereby
enhancing the model’s representational capabilities. However,
combining these data can lead to a computationally heavy
model. Recently, with the rapid advancements in large visual-
language pre-training models, textual description has emerged
as a valuable resource to provide both location and motion
details for AU detection. In this paper, to leverage large visual-
language models for the AU detection task, this paper proposes

a refined behavior-prompt AU detection method based on
CLIP.

Fig. 2 illustrates the proposed method. Specifically, we
introduce a coarse-to-fine tree attention module atop CLIP’s
image encoder, which utilizes a multi-scale and hierarchical
attention mechanism to capture fine-grained AU features and
their long-range dependencies. Additionally, we harness the
powerful semantic representation capabilities of the large-
scale vision-language model to encode learnable AU behav-
ior prompts, ensuring that the text embedding incorporates
comprehensive prior knowledge of AU behaviors, thus en-
hancing adaptation to the AU detection task. Finally, we
propose a novel feature interaction module that capitalizes
on the information interaction capabilities of the Transformer.
This module not only decouples AU-specific representations
from AU image features based on the behavior prompts but
also incorporates context-related visual information into the
learnable behavior prompts during training, further mitigating
vision-text bias and enhancing performance for subsequent
learning.

B. Image Encoder with Coarse-to-Fine Tree Attention Module

In this subsection, we first describe the image encoder
used to extract AU-relevant features. Given a source facial
image I from dataset D, AU-related features are extracted
through a well-designed backbone network. The pre-trained
CLIP image encoder, commonly used in general computer
vision tasks, serves as the feature extraction backbone, denoted
as FI . Due to the subtle appearance changes associated with
AUs, the low-dimensional image embeddings produced by the
vanilla CLIP model are insufficient for capturing AU-specific
features. Consequently, we transform the output of the image
encoder to generate high-dimensional image features, denoted
as FI(I) ∈ Rd×h×w, where d, h, w represent the dimension
of channel, height, width of the image features, respectively.

Since CLIP is not specifically designed for the AU detection
task, and AUs are characterized by localized facial muscle
movements and coexistence at varying intensities, we propose
a coarse-to-fine tree attention mechanism. This mechanism,
inspired by [25], captures fine-grained features and their long-
range dependencies through a multi-scale and hierarchical
representation. Specifically, the tree attention recursively par-
titions the tokens generated by the image features into four
uniform patches at each level, forming a token pyramid, as
illustrated in Fig. 3. At each level, the top K patches with
the highest attention scores are selected, and attention at
the next level is computed only within the relevant regions
corresponding to the selected top K patches.

The tree attention module consists of four Vision Trans-
former layers, each of which further contains a tree attention
layer and an MLP layer. More specifically, for the tree
attention layer, the image features FI(I) generate queries,
keys, and values, denoted as Q = {q1, q2, · · · , qhw}, K =
{k1, k2, · · · , khw}, and V = {v1, v2, · · · , vhw}, respectively.
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Fig. 2. An overview of the proposed method. The facial image is first passed through a pre-trained image encoder, and then input into a coarse-to-fine tree
attention module to extract fine-grained AU image features. The behavioral prompts of the AUs are tokenized and concatenated with learnable prompts, and
then fed into the pre-trained text encoder to obtain the corresponding behavioral text embeddings for the AUs. These embeddings are subsequently aligned
with the image features using a projection layer. Finally, the image features and text embeddings are concatenated and passed to the feature interaction module,
which decouples the AU-specific visual representations. The visual representations are then multiplied by the corresponding text embeddings for a dot-product
similarity calculation to obtain the final prediction results.

For each qi, it will compute a weighted average of the
corresponding results from different levels:

si =
∑

1≤l≤L

wl
is

l
i, (1)

sli = Attention(qi,K
l
Ωi
, V l

Ωi
), (2)

where wl
i is a learnable weight, Kl

Ωi
and V l

Ωi
are matrices

composed of all keys and values within the region Ωl
i, and the

l-th level is denoted as l ∈ {1, 2, · · · , L}. Attention represents
standard attention computing. The whole process can be seen
in Fig. 3. Finally, the output of the tree attention layer, denoted
as S = {s1, s2, · · · , shw}, is passed through the MLP layer
to obtain updated image features, and this process is repeated
until the final image feature F v ∈ Rd×hw is obtained.

C. Behavior-prompt Encoding

To incorporate AU-specific behavior information, our core
idea is to leverage the powerful semantic representation ca-
pabilities of large vision-language models to explicitly encode
comprehensive prior knowledge of AU behaviors. Specifically,
the AU-specific behavioral descriptions, along with learnable
prompts, are processed by a text encoder to generate the
corresponding AU-specific text embeddings.

Similar to previous work [30], we adopt detailed AU-
specific behavior descriptions from FACS [3] as prompts.
These AU-specific behavior prompts are tokenized as the
text input, represented as Tokenizer(description)k in (3).
Meanwhile, following [38], we further introduce the learnable
prompts as an additional component of the text input to

Level 1

Level 2

Level 3

Q K/V

Fig. 3. An illustration of the tree attention mechanism for a query token
qi. The query token on the left is computed with the key/value tokens of
the corresponding color on the right to obtain attention scores. The numbers
on these patches indicate the attention scores, while the red boxes highlight
the regions with the top-2 attention scores. Computation at the next level is
carried out only within these highlighted regions.

enhance adaptation to the AU detection task. The final form
of the prompts is given as follows:

pk = [x]1[x]2 · · · [x]M [Tokenizer(description)]k, (3)

where [x]m represents a vector with the same dimension as
word embeddings, M represents the number of the learnable



prompt tokens, and k represents the corresponding AU cate-
gory. pk represents the AU-specific prompt and The complete
set of prompts is denoted as P = {p1, p2, · · · , pk} ∈ Rd×c,
where d represents the channel dimension and c is the number
of AU categories.

Additionally, the incorporation of the tree attention module
for fine-grained AU feature extraction may lead to potential
misalignment between the image features and the text embed-
dings. To address this issue, we first encode the AU-specific
behavior prompts using CLIP’s text encoder FT , and then pass
them through a projector consisting of two fully connected
layers and a nonlinear activation function. This guarantees
proper alignment between the text embeddings and the image
features. The entire process is formulated as:

F t = GELU(FT (P )w1 + b1)w2 + b2, (4)

where w1, w2, b1, and b2 are the weight matrices and bias
vectors in the projector. GELU is the non-linear activation
function. F t ∈ Rd×c represents the aligned text embeddings.

D. Feature Interaction Learning

To decouple AU-specific representation from image features
using behavior prompts, we exploit the information interaction
capabilities of a Transformer-based architecture. Inspired by
[28], the interaction process utilizes a transformer encoder
FC , which takes image features F v and text embeddings
F t as inputs. The input is represented as F = (F v, F t) ∈
Rd×(hw+c). Through the multi-head self-attention mechanism,
the transformer encoder effectively decouples highly relevant
AU-specific visual representations F t′ , leveraging the seman-
tic information provided by behavior-prompts corresponding
to AUs. Finally, the dot-product similarity between this AU-
specific representations F t′ and the corresponding text embed-
dings F t are computed to obtain the predicted probability ŷ
for AUs. This process is expressed as:

F ′ = FC(F ), (5)

ŷ = sigmoid(F t′ · F t), (6)

where F ′ = (F v′
, F t′) ∈ Rd×(hw+c) represents the output

of the Transformer encoder and ŷ denotes the predicted
probabilities. Furthermore, based on this design, the model can
incorporate context-related visual information into the prompts
through backpropagation during training, which further miti-
gate vision-text bias and enhance the guidance capability of
the behavioral prompts for subsequent learning.

E. Loss Function

Facial AU detection, as a multi-label detection task, suffers
from a significant label imbalance problem. To address this
issue, we adopt a weighted asymmetric cross-entropy loss
function [13] to improve the detection of both activated AUs
and non-activated AUs that are challenging to distinguish. The
formula is as follows:

Lwa = − 1

N

N∑
i=1

wi[yilog(ŷi) + (1− yi)ŷilog(1− ŷi)], (7)

where yi is the ground truth, ŷi is the predicted probability, and
wi is a weight of the ith AU. N represents the total number
of AUs. The wi is computed by wi = N(1/ri)/

∑N
j=1(1/ri),

where ri is the occurrence rate of ith AU.
Additionally, considering that AU detection is often biased

towards non-occurrence, we further introduce a weighted dice
loss [18]. It can be formulated as:

Ldice =
1

N

N∑
i=1

wi(1−
2yipi + ϵ

y2i + p2i + ϵ
), (8)

where ϵ is a smooth term.
The overall loss function is formulated by integrating both

components, denoted as:

L = λ1Lwa + λ2Ldice, (9)

where λ1 and λ2 are the trade-off parameters.

IV. EXPERIMENTS

A. Experiment Setting

1) Dataset: We evaluate the performance of the proposed
method on two widely used benchmark datasets for facial AU
detection: BP4D [35] and DISFA [14].

• BP4D consists of 328 facial videos in both 2D
and 3D formats, collected from 23 females and 18
males who were asked to respond to eight different
emotion-eliciting tasks. The dataset contains approxi-
mately 140,000 frames, each annotated with the occur-
rence or non-occurrence of 12 AUs.

• DISFA recorded 27 facial image sequences from 12 fe-
males and 15 males while they watched emotion-eliciting
video clips. The dataset comprises 130,815 frames, each
annotated with six levels of intensity {0, 1, 2, 3, 4, 5}
for eight AUs. Reference the settings of [24], [36], if the
intensity is equal or greater than 2, it is considered to be
present; otherwise, it is non-present.

Following the experimental setup of [18], [36], the proposed
method employs subject-exclusive three-fold cross-validation
on the BP4D and DISFA datasets, reporting the average results
across the three folds.

2) Data Pre-processing: For all raw images in both bench-
marks, we apply a similarity transformation to align the face
region and crop them to a size of 256×256 based on landmarks
generated by MTCNN [33]. Subsequently, random cropping is
applied to the aligned face images to resize them to 224×224,
enhancing data diversity. Additionally, we incorporate various
data augmentation techniques, including random horizontal
flipping and random color jittering in brightness, contrast, and
saturation.

3) Implementation Details: We choose ViT-B/16-based
CLIP pretrained on WIT as the backbone. During training, the
text encoder of CLIP is kept frozen, while the initial learning
rates for the image encoder and learnable prompts are set to
1 × 10−5 and 1 × 10−4, respectively. For other modules, the
initial learning rates are set to 1×10−3 for BP4D and 1×10−4

for DISFA, respectively. Additionally, a cosine decay learning



TABLE I
F1-SCORE FOR 12 AUS ON THE BP4D DATASET. THE TOP THREE RESULTS ARE HIGHLIGHTED WITH BOLD, UNDERLINE, AND BOX, RESPECTIVELY. % IS

OMMITED.

Method Year
AU

Avg.
1 2 4 6 7 10 12 14 15 17 23 24

Static
image-based

DRML [36] 2016 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
EAC-Net [10] 2017 39.0 39.0 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
LP-Net [15] 2019 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
SRERL [7] 2019 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
JAA-Net [18] 2020 53.8 47.8 58.2 [78.5] 75.8 82.7 88.2 63.7 43.3 61.8 45.6 49.9 62.4
UGN-B [24] 2021 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3
FAUDT [5] 2021 51.7 49.3 61.0 77.8 [79.5] 82.9 86.3 67.6 51.9 63.0 43.7 [56.3] 64.2
KDSRL [1] 2022 53.3 47.4 56.2 79.4 80.7 85.1 89.0 67.4 55.9 61.9 48.5 49.0 [64.5]
AC2D [20] 2024 54.2 54.7 56.5 77.0 76.2 84.0 89.0 63.6 54.8 [63.6] 46.5 54.8 64.6

Sequence-based
RTATL [29] 2021 57.1 [49.7] 60.5 77.9 76.1 [84.4] 87.2 64.3 [53.5] 67.0 48.9 48.6 64.6
AAR [19] 2023 53.2 47.7 56.7 75.9 79.1 82.9 [88.6] 60.5 51.5 61.9 51.0 56.8 63.8
KS [11] 2023 [55.3] 48.6 57.1 77.5 81.8 83.3 86.4 62.6 52.3 61.3 51.6 58.3 64.7

Textual
description-Based

SEV-Net [30] 2021 58.2 50.4 [58.3] 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9
Ours 2025 54.5 47.7 57.0 77.8 78.8 82.9 88.9 [66.7] 53.3 63.1 [49.7] 55.6 64.7

TABLE II
F1-SCORE FOR EIGHT AUS ON THE DISFA DATASET. THE TOP THREE RESULTS ARE HIGHLIGHTED WITH BOLD, UNDERLINE, AND BOX, RESPECTIVELY.

% IS OMMITED.

Method Year
AU

Avg.
1 2 4 6 9 12 25 26

Static
image-based

DRML [36] 2016 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC-Net [10] 2017 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
JAA-Net [18] 2019 62.4 60.7 67.1 41.1 45.1 73.5 90.9 67.4 63.5
LP-Net [15] 2019 29.9 24.7 72.7 46.8 49.6 72.9 [93.8] 65.0 56.9
SRERL [7] 2020 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
UGN-B [24] 2021 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
FAUDT [5] 2021 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
KDSRL [1] 2022 [60.4] 59.2 67.5 52.7 51.5 76.1 91.3 57.7 [64.5]
AC2D [20] 2024 57.8 59.2 70.1 50.1 54.4 75.1 90.3 [66.2] 65.4

Sequence-based
RTATL [29] 2021 57.8 52.8 70.8 53.2 52.7 74.5 91.5 51.9 63.1
AAR [19] 2023 62.4 53.6 [71.5] 39.0 48.8 76.1 91.3 70.6 64.2
KS [11] 2023 53.8 59.9 69.2 54.2 50.8 [75.8] 92.2 46.8 62.8

Textual
description-Based

SEV-Net [30] 2021 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8
Ours 2025 65.0 [55.4] 71.0 [54.1] [52.9] 74.3 94.4 64.5 66.4

rate scheduler is employed along with the AdamW optimizer,
with β1 = 0.9, β2 = 0.99, and a weight decay of 5×10−4. The
model is trained for 12 epochs with a batch size of 64, and
the first epoch is used for linear warm-up. Both parameters λ1

and λ2 in the overall loss funtion (9) are set to 1. The other
parameters, K, L, and M are set to 2, 3, and 16, respectively.
All our experiments are conducted using an Nvidia RTX 4090
GPU based on the open-source PyTorch platform.

4) Evaluation Metrics: Following previous works [10],
[18], [36], We adopt the frame-based F1-score to evaluate the
performance of the methods. The F1-score is formulated as
F1 = 2 P ·R

P+R , balancing precision P and recall R by jointly
considering them.

B. Comparison with State-of-the-arts

We compared the proposed method with 13 SOTA AU
detection methods under the same evaluation setup. These

methods include DRML [36], EAC-Net [10], JÂA-Net [18],
LP-Net [15], SRERL [7], UGN-B [24], FAUDT [5], KDSRL
[1], AC2D [20], RTATL [29], AAR [19], KS [11], and SEV-
Net [30]. Among these methods, RTATL, AAR and KS take
frame sequences as input and incorporate temporal informa-
tion, while the remaining methods rely on static images as
input. Additionally, compared with other methods, both SEV-
Net and the proposed method integrate behavioral textual
descriptions of AUs as additional input.

Table I presents the performance of our proposed method
and these SOTA methods on the BP4D dataset. Overall,
our method demonstrates competitive performance, achieving
comparable or superior results in terms of the average F1-
score across all SOTA methods. Specifically, compared with
sequence-based methods such as RTATL, AAR, and KS, the
proposed approach performs comparably by utilizing behav-
ioral descriptions to incorporate motion information for AU



TABLE III
COMPONENT ABLATION STUDY ON THE BP4D DATASET USING

F1-SCORE (%). BASELINE: PRE-TRAINED CLIP WITH LEARNABLE IMAGE
ENCODER. COMPONENT DEFINITIONS: FIL (FEATURE INTERACTION
LEARNING), TA (TREE ATTENTION), LP (LEARNABLE PROMPTS).

Baseline FIL TA LP F1-score

✓ 62.9
✓ ✓ 63.5
✓ ✓ ✓ 64.0
✓ ✓ ✓ ✓ 64.7

detection, rather than relying on extensive temporal inputs.
Notably, for AUs such as AU12 and AU14, which occur in
similar facial regions but exhibit distinct movement patterns,
our method achieve competitive performance in terms of F1-
score. The above results indicate that behavioral descriptions
are beneficial in extracting AU-related motion information.
Furthermore, compared with SEV-Net, which also incorporates
AU behavioral descriptions as additional input, our method
improves performance by 1.3%.

Table II summarizes the performance of all methods on
the DISFA dataset. The proposed method outperforms all
SOTA methods, achieving the highest average F1-score, with
an improvement of at least 1.5%. Especially, compared with
SEV-Net, our method boosts overall performance by 12.9%.

C. Ablation study

1) Effectiveness of Each Component: To evaluate the ef-
fectiveness of each component in our proposed method, we
conduct a series of ablation experiments on the BP4D dataset.
Initially, we use the ViT-B/16-based CLIP model as the base-
line, with a frozen text encoder and a learnable image encoder.
Building upon this baseline, we sequentially add the feature
interaction learning module, the coarse-to-fine tree attention
module, and the learnable prompts, performing training and
validation at each stage. Table III demonstrates that each
module contributes approximately 0.5 to 0.7 percentage points
to the average F1-score.

2) Advantage of the Tree Attention: To capture the fine-
grained features related to AUs, it is crucial to select an
appropriate attention module. In this subsection, we compare
four different attention modules. One of these is an activation-
based spatial attention [32], which is computed by summing
the absolute values raised to the power of p (where p = 2.0)
in each channel. The Convolutional Block Attention Module
(CBAM) [26] is a simple yet effective attention module that
computes attention across both channel and spatial dimensions.
Additionally, we also evaluate the original self-attention mod-
ule from Vision Transformers [4] and tree attention module
utilized in our approach. As shown in Fig. 4, the tree attention
module achieves the highest F1-score. Based on these results,
the tree attention network is adopted for extracting fine-grained
AU features and long-range dependencies.

3) Visualization: In this subsection, we visualize the iden-
tified ROIs for different AUs using GRAD-CAM [17]. The
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Fig. 4. F1-score(%) of different attention modules. AcAtt denotes the
activation-based spatial attention. CBAM denotes the convolutional block
attention module. Self-attention denotes the traditional attention module. Tree
Attention denotes our proposed coarse-to-fine tree attention module.

Fig. 5. Visulization of AU7, AU10, and AU12 for the baseline and our
proposed methods. (Best viewed in color).

comparative visualization results of the proposed method and
baseline are shown in Fig. 5, demonstrating that our method
achieves more precise localization of the target AU regions
compared with the baseline, with a particularly notable im-
provement observed for AU10.

V. CONCLUSIONS

In this paper, we propose a refined behavior-prompt facial
AU detection model featuring a coarse-to-fine tree atten-
tion mechanism. Specifically, we introduce learnable behavior
prompts to leverage a large visual-language model, effectively
capturing comprehensive prior knowledge of AU behavior.
Moreover, due to the varying intensities and interactive nature
of AUs, we propose a coarse-to-fine tree attention module to
more effectively capture fine-grained visual features of indi-
vidual AUs and their long-range dependencies. Additionally,
a feature interaction module is employed to decouple AU-
specific representations and incorporate content-related visual
information into the prompts during training, further mitigating
vision-text bias and enhancing the guidance capability of
the behavioral prompts for subsequent learning. Extensive
experiments on benchmark datasets demonstrate that our pro-
posed method achieves competitive performance compared
with SOTA methods.
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